Evidence for medial/lateral specification and positional information within the presomitic mesoderm.

نویسندگان

  • C Freitas
  • S Rodrigues
  • J B Charrier
  • M A Teillet
  • I Palmeirim
چکیده

In the vertebrate embryo, segmentation is built on repetitive structures, named somites, which are formed progressively from the most rostral part of presomitic mesoderm, every 90 minutes in the avian embryo. The discovery of the cyclic expression of several genes, occurring every 90 minutes in each presomitic cell, has shown that there is a molecular clock linked to somitogenesis. We demonstrate that a dynamic expression pattern of the cycling genes is already evident at the level of the prospective presomitic territory. The analysis of this expression pattern, correlated with a quail/chick fate-map, identifies a 'wave' of expression travelling along the future medial/lateral presomitic axis. Further analysis also reveals the existence of a medial/lateral asynchrony of expression at the level of presomitic mesoderm. This work suggests that the molecular clock is providing cellular positional information not only along the anterior/posterior but also along the medial/lateral presomitic axis. Finally, by using an in vitro culture system, we show that the information for morphological somite formation and molecular segmentation is segregated within the medial/lateral presomitic axis. Medial presomitic cells are able to form somites and express segmentation markers in the absence of lateral presomitic cells. By contrast, and surprisingly, lateral presomitic cells that are deprived of their medial counterparts are not able to organise themselves into somites and lose the expression of genes known to be important for vertebrate segmentation, such as Delta-1, Notch-1, paraxis, hairy1, hairy2 and lunatic fringe.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentiation of the metameric pattern in the embryonic axis of the mouse. II. Somitomeric organization of the presomitic mesoderm.

The formation of the embryonic axis is brought about by the continuous recruitment of cells from the primitive streak, and at later stages from the tail bud. Presumptive somitic cells are first incorporated into presomitic mesoderm before they emerge as metamerically arranged somites. When the presomitic mesoderm was examined in stereo with the scanning electron microscope (SEM), mesenchymal ce...

متن کامل

Mesodermal subdivision along the mediolateral axis in chicken controlled by different concentrations of BMP-4.

Molecular mechanisms by which the mesoderm is subdivided along the mediolateral axis in early chicken embryos have been studied. When the presomitic mesoderm (medial mesoderm) was transplanted into the lateral plate, the graft was transformed into lateral plate tissue, indicating that the primitive somite was not fully committed and that the lateral plate has a cue for mesodermal lateralization...

متن کامل

Mef2d Acts Upstream of Muscle Identity Genes and Couples Lateral Myogenesis to Dermomyotome Formation in Xenopus laevis

Xenopus myotome is formed by a first medial and lateral myogenesis directly arising from the presomitic mesoderm followed by a second myogenic wave emanating from the dermomyotome. Here, by a series of gain and loss of function experiments, we showed that Mef2d, a member of the Mef2 family of MADS-box transcription factors, appeared as an upstream regulator of lateral myogenesis, and as an indu...

متن کامل

Specification of vertebral identity is coupled to Notch signalling and the segmentation clock.

To further analyse requirements for Notch signalling in patterning the paraxial mesoderm, we generated transgenic mice that express in the paraxial mesoderm a dominant-negative version of Delta1. Transgenic mice with reduced Notch activity in the presomitic mesoderm as indicated by loss of Hes5 expression were viable and displayed defects in somites and vertebrae consistent with known roles of ...

متن کامل

Zebrafish lunatic fringe demarcates segmental boundaries

Cell interactions involving Notch signaling are required for the demarcation of tissue boundaries in both invertebrate and vertebrate development. Members of the Fringe gene family encode beta-1,3 N-acetyl-glucosaminyltransferases that function to refine the spatial localization of Notch-receptor signaling to tissue boundaries. In this paper we describe the isolation and characterization of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 128 24  شماره 

صفحات  -

تاریخ انتشار 2001